

Improving the ecological condition of regulated rivers by altering the structure and operation of river regulating structures

Robyn Watts, Charles Sturt University rwatts@csu.edu.au

research for a sustainable future

River regulation

- The flow regimes of most of the rivers in the Murray-Darling Basin (MDB) have been modified due to flow regulation and water extraction
- The majority of the licensed water in the MDB is used for irrigated agriculture

Impact of river regulation in MDB

- Cold water pollution downstream of large impoundments
- Shift in seasonality of flows and loss of variability
 - Most rivers previously had highly variable flow regime with winter/spring maximum flow
 - Under regulated conditions there is less variable flow regime with summer maximum flow
- Loss of small and medium floods
- Reduced flooding of wetlands

Impact on river ecology

- Lower species richness
- Dominance of tolerant species
- Disruption to breeding cues
- Reduced migration
- High abundance of alien species

Environmental water

- Environmental water available through several mechanisms
- Planned environmental water
 - Provided by legislation (eg. Water Management Act NSW)
 - Water allocated under rules of Water Sharing Plans
- Adaptive environmental water
 - Water committed to the environment under a water licence
 - Several organisations involved in purchase of water
 (eg. Living Murray, Water For Rivers, River Reach, Riverbank, Nature Conservation Water Trust)

Challenge

- To use environmental water to maintain and improve the ecological health of regulated rivers at the same time as sustaining productive irrigation industries
- Constraints
 - Diminishing water resources
 - Small environmental water allocation in regulated rivers
 - Constraints on water delivery
- It is imperative that we maximise environmental outcomes from the available environmental water

Can food production and environmental flows coexist?

- <u>Better</u> delivery of environmental flows can be achieved by altering the structure and operation of river infrastructure
- Examples
 - Reaches directly downstream of major dams
 - Mid-catchment riverine environments
 - Anabranches
 - Wetlands

Reaches downstream of major dams

- Issues
 - Cold water pollution
 - Less variable flow regime
 - Shift in seasonality of flows
- Add infrastructure to dams to reduce cold water pollution (eg. multi-level offtake, impellers, submerged curtains)
- Alter operational plans of dams to introduce more variability into discharge patterns during periods of relatively constant discharge

Dartmouth Dam releases

- Long periods of high flows (transfers from Dartmouth to Hume Reservoir)
- Long periods of low flows (filling phase)

Hydrograph for the Mitta Mitta River illustrating modelled natural flow conditions and actual controlled flow for the period 1990 to 2000 (Source MDBC)

Issues

- Under constant flows biofilms build up to nuisance levels that are unacceptable to the public
- There is lower biodiversity in the Mitta Mitta River compared to reference streams

Site 1 – constant flow period 2000 ML/day

Site 4 – constant flow period 2700 ML/day

Site 4 – flow pulse 6700 ML/day

Summary of outcomes of flow pulse

- Increased dissolved organic matter and bacterial metabolism after pulse
- Algae
 - Scoured filamentous green algae from cobble during peak flow
 - Increase in algal diversity after pulse (community composition more similar to the reference site after flow pulse
 - These changes were not sustained 2 weeks after flow pulse
- Macroinvertebrates
 - Increased diversity directly downstream of dam after flow pulse
 - Community composition became more similar to the reference site
 - These changes were not observed at sites further downstream

Watts, R.J., Nye E.R., Thompson, L.A., Ryder, D.S., Burns, A. & Lightfoot, K. 2005. *Environmental monitoring of the Mitta Mitta River associated with the major transfer of water resources from Dartmouth Reservoir to Hume Reservoir* 2004/2005.. <u>http://www.csu.edu.au/research/jcentre/reports/jcec_report97.pdf</u>

Watts R.J., Ryder D.S., Burns A., Wilson A.L., Nye E.R., Zander A. & Dehaan R. 2006. *Responses of biofilms to cyclic releases during a low flow period in the Mitta Mitta River, Victoria*, Australia. http://www.csu.edu.au/research/ilws/archive05/ILWSreports06.htm)

Mid-catchment riverine environments

- Issues
 - Loss of instream connectivity due to weirs
 - Loss of small and medium floods
 - Less variable flow regime
 - Shift in seasonality of flows
- Install fishways to improve fish passage
- Open gates on weirs to pass flows outside irrigation season
- Alter operation of weirs to achieve water level variation

Case study: flow variability in Mid-Murrumbidgee

- River red gum logs on river bank provide a surface for algae and habitat for fauna
- Water level changes cause wetting and drying of algae on logs

Simulated flow experiment

Blocks of wood exposed to periods of wetting and drying to simulate changes in water level that would be experienced under different flow regimes

Duration: 75 days

3 flow regime treatments:

- permanently inundated (ie. constant flow)
- 11 days wet/ 21 days dry (ie. 3 longer pulses)
- 5 days wet/ 9 days dry (ie. 6 shorter pulses)

Parameters examined: algal diversity and productivity

Results - simulated flow experiment (75 days)

Ryder, D.S. 2004. Response of biofilm metabolism to water level variability in a regulated floodplain river. Journal of the North American Benthological Society 23(2), 214-223.
Ryder D.S., Watts R.J., Nye E., & Burns, A. 2006. Can flow velocity regulate epixylic biofilm structure in a regulated floodplain river? Marine and Freshwater Research, 57(1), 29-36.

Anabranches

- Issues
 - Irrigation flows travel down anabranches in summer
 - Loss of irrigation water in anabranch
 - Loss of low flow refuge areas in anabranches
- Operate weirs on anabranches to reduce flows during summer and create low flow refuge environments

Case study: modification of weir on anabranch

Beavers Creek

Infrastructure on wetlands

- Issues
 - Alteration of natural wetting and drying regimes
 - Reduced frequency of flooding of some wetlands
 - Long periods of inundation in wetlands influenced by weir pools
- Install regulators to protect wetlands from inundation
- Use mobile pumps to inundate wetlands
- Pulse flows from weirs to inundate wetlands
- Use irrigation canals to deliver water to wetlands

Wetland watering

Examples of ecological responses to wetland watering

- increased wetland plant diversity
- bird breeding events
- pulse of microcrustaceans and fish larvae

Considerations

- Changing the structure and operation of river infrastructure is not a straightforward process and the social, economic and environmental impacts of proposed changes need to be considered
- Effective stakeholder engagement will be an essential component of any proposed change

Conclusions

- Currently not maximising the environmental outcomes from the available environmental water
- Achieve better delivery of environmental water by making operational and structural changes to existing infrastructure and in some cases installing new infrastructure
- Different strategies are required in different reaches
- Monitoring and adaptive management

Acknowledgements

<u>Mitta Mitta River</u> Colleagues – D Ryder, A Burns, E Nye, A Wilson, R Dehaan Industry partners – Murray-Darling Basin Commission, River Murray Water, Statewater

<u>Mid-Murrumbidgee flows (ARC project)</u> Colleagues - D Ryder, A Robertson

Industry partners – NSW DIPNR, NSW Department of Environment and Conservation

<u>Beavers Creek anabranch</u> Colleagues – S Kopf, P Humphries Industry partners – Water for Rivers

<u>Wetland watering</u> Colleagues – O. Arnaiz, A Wilson, K Podnar, S. Wassens Industry partners - Murrumbidgee CMA, Murray Wetlands Working Group

<u>Review of structures and operation of flow regulating infrastructure</u> Industry partners – NSW Department of Commerce

